

Aggregator: Focusing on Citizen Empowerment

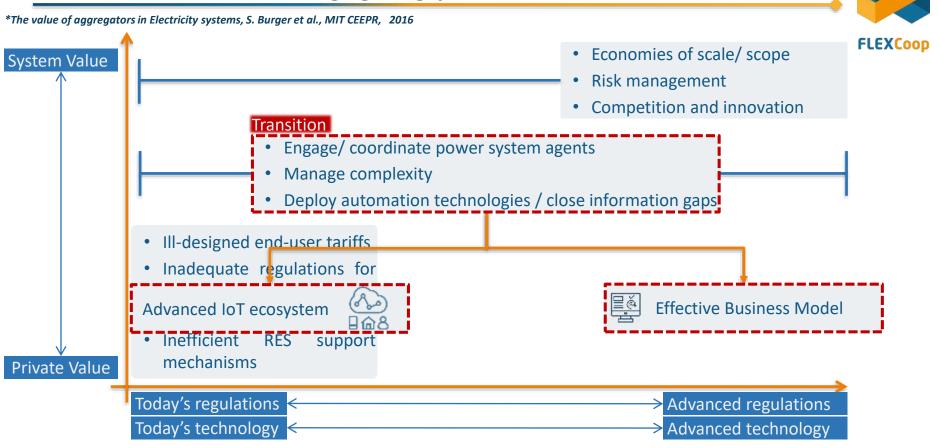
Katerina Valalaki

The FLEXCoop project

THE PROBLEM

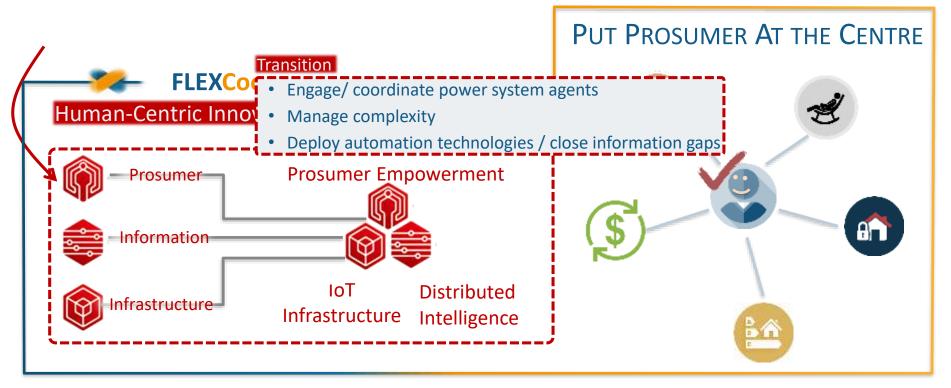
Small consumers excluded from energy markets

- Lack of smart / real-time metering
- **Regulatory** framework in most EU Countries
- Non-viable market offerings for small consumers


- Make prosumers understand their flexibility
- Aggregation / overcome minimum sizing of bids
- **Fair contrac**tual relationships with aggregators
- Highly effective **automated DR** strategies

THE **FLEXCOOP** SOLUTION

- **Cooperatives** as aggregators / New business model
- **End-to-end automated DR** optimization framework
- Flexibility based on low-level metering / ambience sensing/ human-centric approach
- **Dynamic** Virtual Power Plant creation

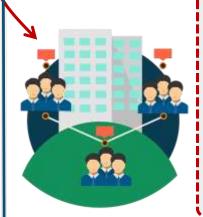


Current vs future status / Bridging the gap

Prosumer Empowerment/ The FLEXCoop IoT Ecosystem

Prosumer Empowerment/ The FLEXCoop Business Model

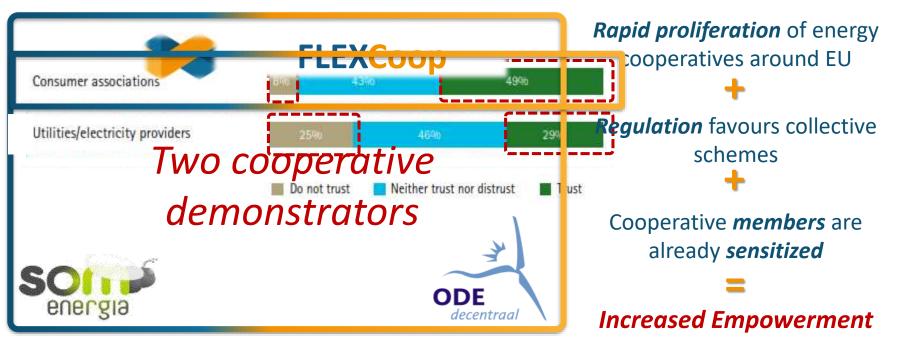
Transition


FLEXCOOP

- Engage/ coordinate power system agents
- Manage complexity
- Deploy automation technologies / close information gaps

FLEXCoop

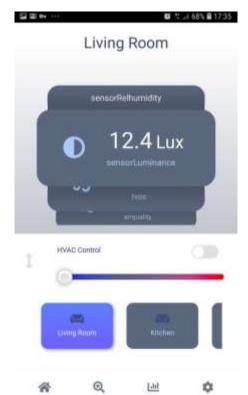
Cooperative as aggregator


RESCoop business models*

- Local group of citizens
- Regional RESCoop
- Fully integrated RESCoop
- Network of RESCoops
- Multi-stakeholder governance
- Non-energy-focused

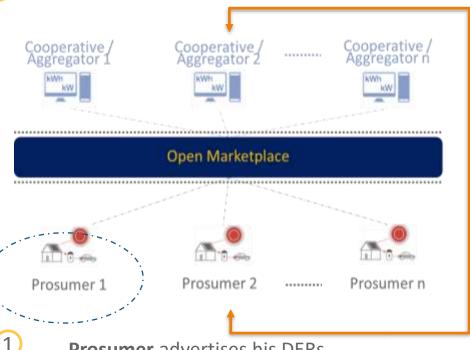
PUT PROSUMER AT THE CENTRE

Why energy cooperatives and not utilities/ The FLEXCoop approach



The FLEXCoop solution / In practice (following a bottom up approach)...

FLEXCoop OSB


0

Prosumer obtains an OSB

FLEXCoop solution / Prosumer – aggregator matching ...

Aggregator searches for available DERs

- **Aggregator** selects suitable DERs and 3) publishes contracts to prosumers
- **Prosumers are** informed on published contracts
- 5 Contract negotiation

- **Prosumer** advertises his DERs
- **Prosumer** obtains an OSB

FLEXCoop solution / after signing a contract...

 Monitors DR evolution / reconfigures

Open DR Optimisation & Tools for aggregators

2 Real time flexibility calculation based on user comfort

6 Local optimization and control

1 Contestual/ambience sessing/metering

7 DR event monisting

OSB₁

OSB₂

OSB₃

6

OSB

The perfect match..!

Straße 1 10589 Berlin, Germany

http://www.flexcoop.eu/

"This project has received funding from the under the European Union's Horizon 2020 research and innovation programme under grant agreement No 773909".

Project Coordinator
Fraunhofer FOKUS
silke.cuno@fokus.fraunhofer.de

Technical Manager
Hypertech
k.valalaki@hypertech.gr

FIRST INTERNATIONAL ENERGY COMMUNITIES CONFERENCE

Mechanisms and technologies: Creating energy communities

- 9th of October, 2019 - Lisbon, Portugal

VALALAKI KATERINA

MERLON in a nutshell

MERLON introduces an Integrated Modular Local Energy Management Framework for the Holistic Operational Optimization of Local Energy Systems in presence of high shares of variable distributed RES.

Strategic Targets

- Further increase of RES integration
- Increase Security of Supply
- Decarbonisation of EU energy future
- Cost-efficient solution avoiding grid infrastructure upgrade

Major Stakeholders involved

- DSOs
- Aggregators
- Prosumers/Asset Managers

DER Technologies involved

- © RES
- **®** BESS
- Local energy system optimization via:
 Demand Response,
 Electric Vehicles,
 Synergies among energy vectors

MERLON in a nutshell

MERLON framework includes pilot testing and validation in real-life conditions in an attempt to demonstrate its techno-economic feasibility.

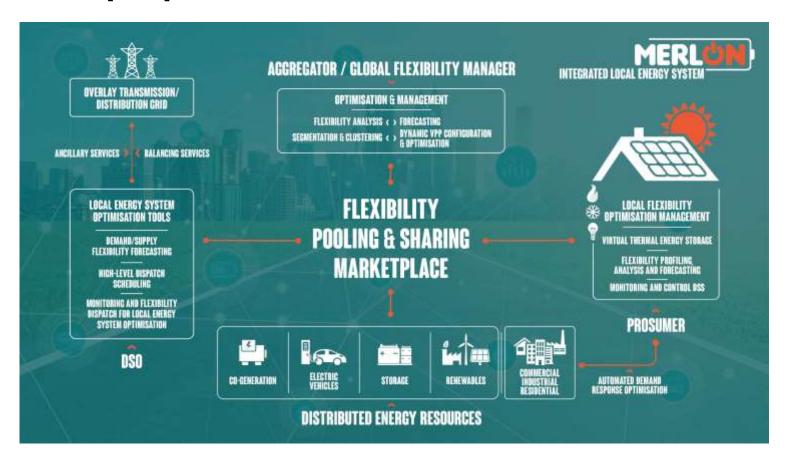
Two assorted "energy islands" incorporating different energy carriers and technologies under different market conditions.

French Pilot Site

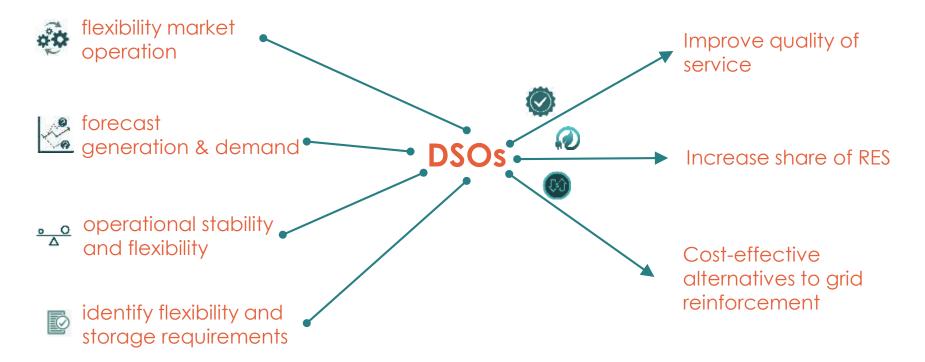
- SOREA DSO supplying 15,000 customers in the Maurienne Valley
- Pilot demonstration in a LV branch
 - commercial and industrial entities
 - 2 PV plants
 - 72 kWp
 - 89 kWp
 - EV charging station

Austrian Pilot Site

- Energie Güssing DSO supplying 3,500 customers in Burgenland
- Pilot demonstration in the town of Strem
 - 630 inhabitants
 - 240 residences
 - 18 PV plants (in total ~1.7 MWp)
 - Biogas CHP plant (500 kWel)
 - EV charging station


Challenges

The MERLON framework will address the challenges of high VRES penetration and de-carbonization to the electrical grid without resorting to large-scale investments for grid reinforcement and VRES curtailment.


- Disrupt the centralized, locally monopolistic market incumbents in the energy sector and allow local communities to become active market stakeholders, thereby enhancing the local economy and community.
- Active participation of consumer in the flexibility framework through customer engagement strategies and context-aware flexibility extraction respecting user comfort.

Solutions proposed

Solutions proposed / DSO

Solutions proposed / Aggregator

context-aware flexibility — Aggregators profiling of prosumers

flexibility trading settlement and remuneration

flexibility-based VPPs for cooperative micro-grid stability

RES integration / curtailment avoidance

Resiliency and security of supply

Solutions proposed / Prosumer

Expected outcomes

Creation of a holistic optimization & DER coordination for Local Energy Communities:

- BESS integration and interconnection at key network locations of Integrated Local Energy Systems (ILES)
- Optimal coordination of local flexibility resources
- Grid balancing via flexibility-induced self-consumption leading to VRES curtailment elimination, ultimately in islanding scenarios
- Contribution to the establishment of Local Energy Communities
- Establishment of locally organized flexibility markets with transparent market transactions and benefit sharing among all stakeholders
- Empowerment of local energy stakeholders and the establishment of viable business cases upon innovative clustered structure based on ILES

Thank you!

Valalaki Katerina Project Manager Hypertech SA Chalandri, Greece

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824386.